Flammverhalten von und Effizienzbewertung von Kohlenwasserstoffen

Grundlagen für das BAFA Förderprogramm

10/2025

CoolTool Technology GmbH Info@cooltool-technology.de

Kruppstr. 184 D-47229 Duisburg

- Planungs- und Berechnungssoftware
- Diagnose, Monitoringund Messsysteme
- Effizienzmessungen
- Schulungen für natürliche Kältemittel
- Schulungen für Kältemittelstrategien und Energieoptimierung
- Planungen für Anlagenbau und -sanierung

Grundlagen und Stoffeigenschaften

Dichte: 1,8 bis 2,0 kg/m³

Zündfähig bei : 1,7 -> 10,9 Vol %

Konzentration: 38 g/m³ Unterer Flammpunkt (LFL)

243 g/m³ Oberer Flammpunkt (HFL)

8 g/m³ "Practical Limit" (PL)

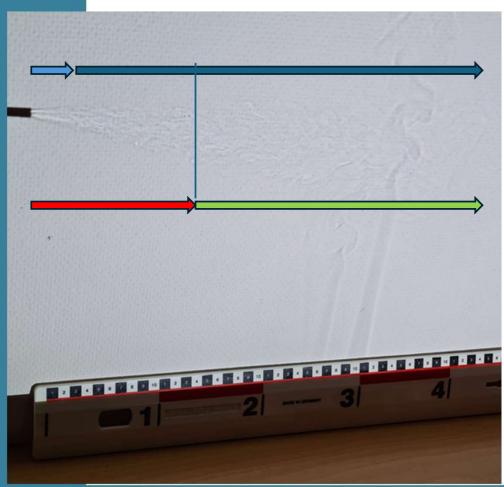
Leckage Verhalten: Bildet Nester

(zusammenhängende Schwaden)

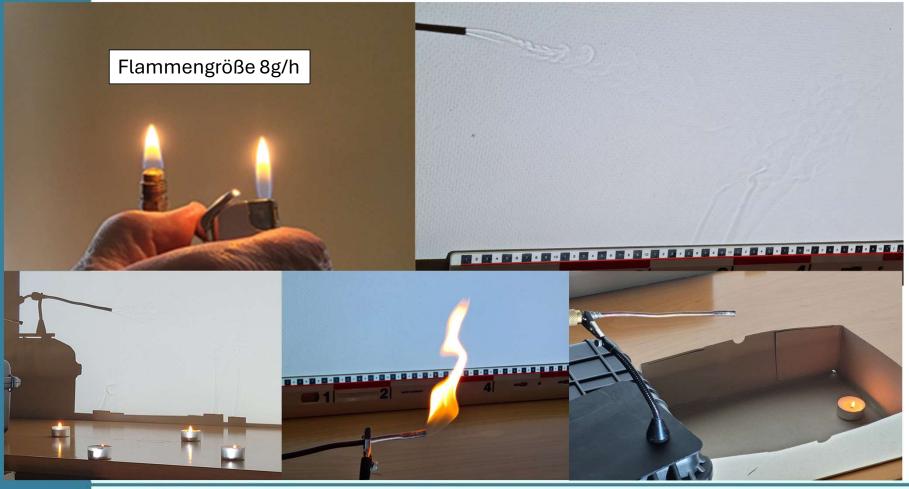
Fließt eigenständig zu Senken

Bleibt lange explosionsfähig

Verwendung Kälte: Für Kältekreisläufe ungeeignet

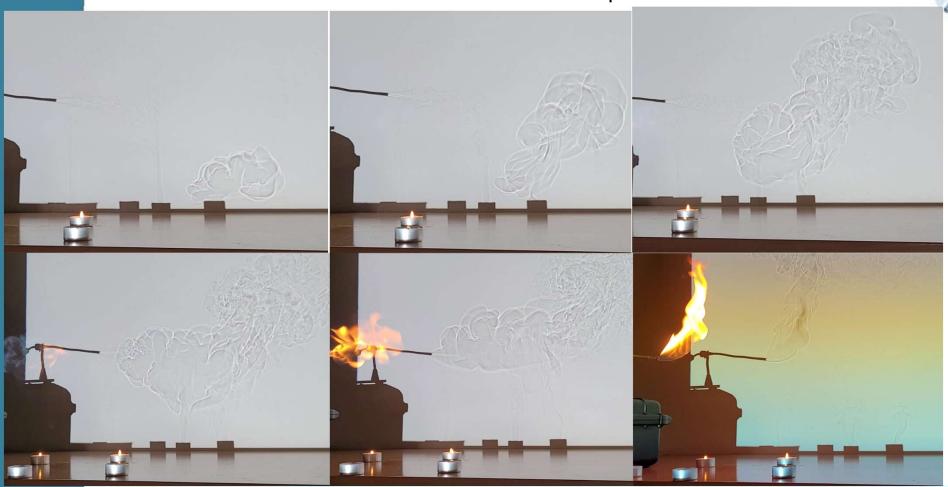

Verringerte Energieeffizienz

Strömungsverhalten


- Strömung geht tendenziell nach unten, da Dichte höher als die von Luft
- Kegelförmiger Austritt mit ca. 20 bis 24° Öffnungswinkel
- Bei D_{Kegel} = 10x D_{düse} müsste 1% Strömung erreicht werden => LFL unterschritten
- Am Anfang laminarer Bereich bis ca. 4 cm
- Turbulenter Bereich bis ca. 30...35 cm erkennbar.
- Danach keine optische Brechung mehr durch Dichteunterschiede => homogene Mischung mit Luft erreicht

Strömungsverhalten - Versuchsaufbau

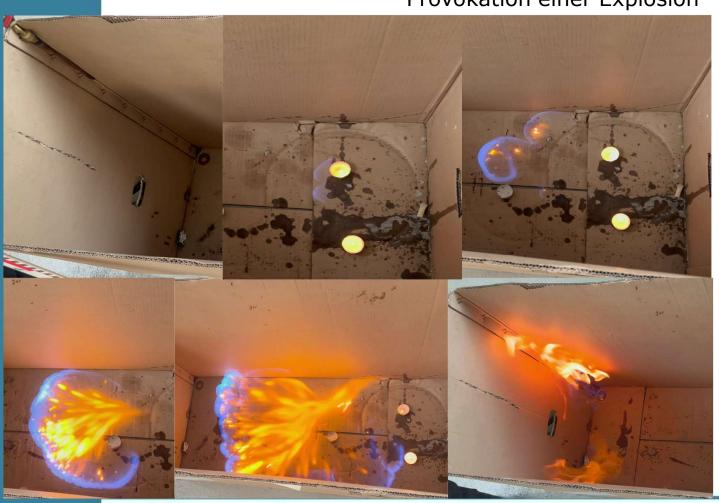
Strömungsverhalten - Zündabstände



8 g/h	256 g/h	1100 g/h
70 kg/h	2.240 kg/h	9.600 kg/h
Zündfähig nach: L _{krit} < 3 cm	L _{krit} ca. 12 cm	L _{krit} ca. 40 cr

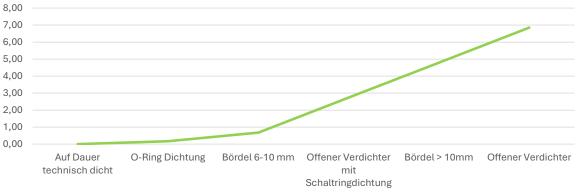
Provokation einer Explosion

Provokation einer Explosion


- Karton mit ca. 280 Litern Inhalt
- Zwei Zündquellen
- Fließrichtung ausströmendes Gas auf die Zündquellen
- Eintrag mit ca. 1100 g/h=> 9600 kg/a
- Keine Zündung bei 90 cm
 Abstand
- Versuch nach 15 Minuten abgebrochen und K-Strömung mit Flamme an Düse gezündet

Provokation einer Explosion

- Karton mit ca. 280 Litern
 Inhalt
- Unter Ausnutzung des Coanda-Effektes Schwade auf den Boden gebracht
- Eintrag mit ca. 1100 g/h => 9600 kg/a
- Zündung nach einigen Minuten
- Verpuffung mit kaum wahrnehmbarem
 Geräusch
- Keine Druckwelle

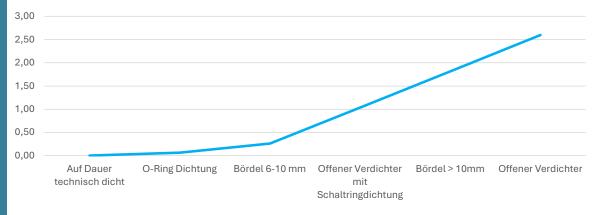


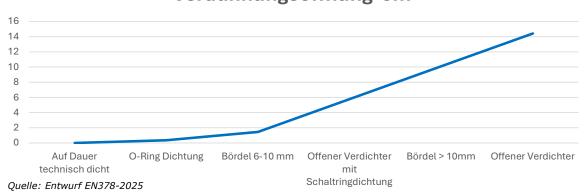
Stand der (zukünftigen) Technik

Leckagerate kg/a

Entwurf der EN 378-2025:

- Nicht gesetzlich bindend
- Entspricht dem Stand der Technik
- Benennung von Leckage Größen
- Berechnung von Leckage
 Mengen
- Leckage Größen sind in der Praxis leicht auffindbar




Stand der (zukünftigen) Technik

Verdünnungsöffnung cm²

Entwurf der EN 378-2025:

- Passive Sicherheit
- Entspricht dem Stand der Technik
- Benennung von notwendiger
 Lüftungsgröße zur Vermeidung von zündfähigen Atmosphären
- Berechnung von Verdünnungsöffnungen
- Lüftungsgröße und Verdünnungsöffnungen sind in der Praxis leicht realisierbar

Stand der (zukünftigen) Technik


Entwurf der EN 378-2025:

- Passive Sicherheit durch Füllmengen
- Entspricht dem Stand der Technik
- Höhere Füllmengen werden **explizit als möglich** genannt
- Unterschied:
 - intrinsische Auslegung => nur über Füllmenge
 - extrinsische Auslegung => weitere Absicherung mittels
 - => "auf Dauer technisch dichter" Ausführung
 - => Überwachung durch Sensoren
 - => mechanische Lüftung

Auslegung Ausblase Leitung für R 290 Sicherheitsventil nach EN378/13136:

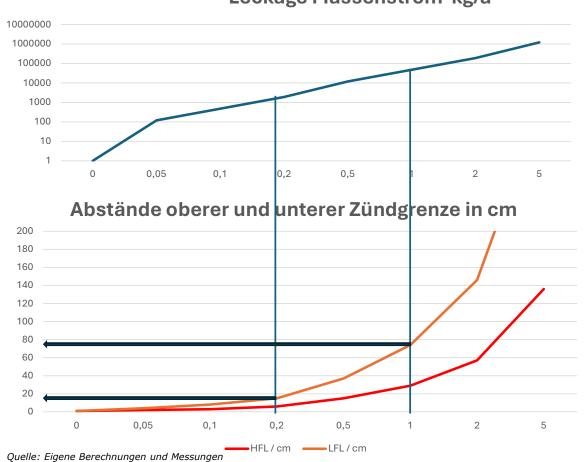
Vom Hersteller angegebener Sicherheitsabstand ist 2m.

Es werden jeweils

- LFL bei 0,753m
- PL bei 1,656m

erreicht.

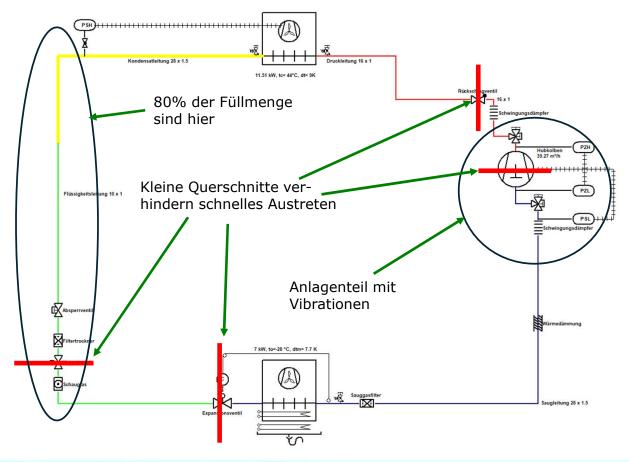
Abblase Leistung ca. 8500 to/a


Die Berechnung der Konzentrationen im Kegel sind unabhängig von der Ausblaserichtung, da die Schwerkraft keinerlei Einfluß hat.

Leckage Massenstrom kg/a

In Anlehnung an EN 378/EN 13136 Bestimmung von HFL und LFL:

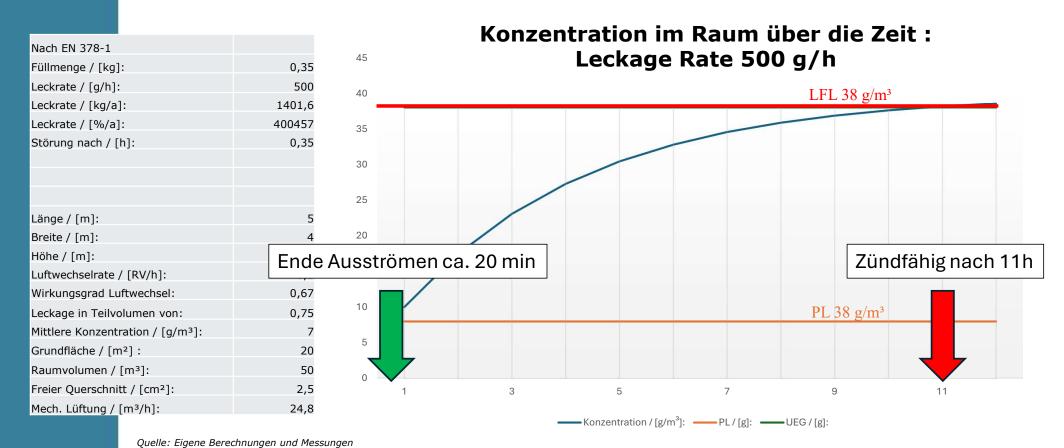
- Passive Sicherheit durch ausreichende Abstände
- Bei "häufiger" vorkommenden Leckage (EN378-2025) Größen unter 10 cm
- Bei theoretisch möglichen
 Havarien immer noch unter 100
 cm



Auftreten von Leckagen an Kälte- und Klimaanlagen

Schnelles Austreten der gesamten Füllmenge ausgeschlossen:

TK-Anlage 7 kW ca. 1800g Füllmenge R290



Grundlegende Eigenschaften von brennbaren Stoffen

Sicherheitsdatenblatt

gemäß Verordnung (EG) Nr. 1907/2006 (REACH), geändert mit 2015/830/EU

Ethylenglykol ≥ 98%, technisch

ABSCHNITT 9: Physikalische und chemische Eigenschaften

9.1 Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Aussehen

Aggregatzustand flüssig (Flüssigkeit)

Farbe farblos - hellgelb

Geruch geruchlos

Geruchsschwelle Es liegen keine Daten vor

Sonstige physikalische und chemische Kenngrößen

Explosionsgrenzen

• untere Explosionsgrenze (UEG) 3,2 Vol.-%

• obere Explosionsgrenze (OEG) 43 Vol.-%

Explosionsgrenzen von Staub/Luft-Gemischen nicht relevant

Dampfdruck 0,12 hPa bei 25 °C

Dichte 1,11 9/_{cm³} bei 20 °C

Dampfdichte 2,14 (Luft = 1)
Schüttdichte Nicht anwendbar

Grundlegende Eigenschaften von brennbaren Stoffen

	Ethanol C2H5OH	Benzin	1,2-Propandiol	Propan C3H8
Siedepunkt bei 1 bar	78°C	85°C	101°C	-42°C
Leicht flüchtig bei RT = 22°C	Nein	Nein	Nein	Ja
Schwaden Bildung	Ja	Ja	Ja	Unwahr- scheinlich
Explosionsbereich	50 – 330 g/m³	35 - 326 g/m³	80 – 400 g/m³	38 – 238 g/m³
Zündtemperatur	~400°C	~220- 350°C	~420°C	~470°C
Zündenergie	0,28 mJ	0,14 mJ	~2 mJ	0,25 mJ

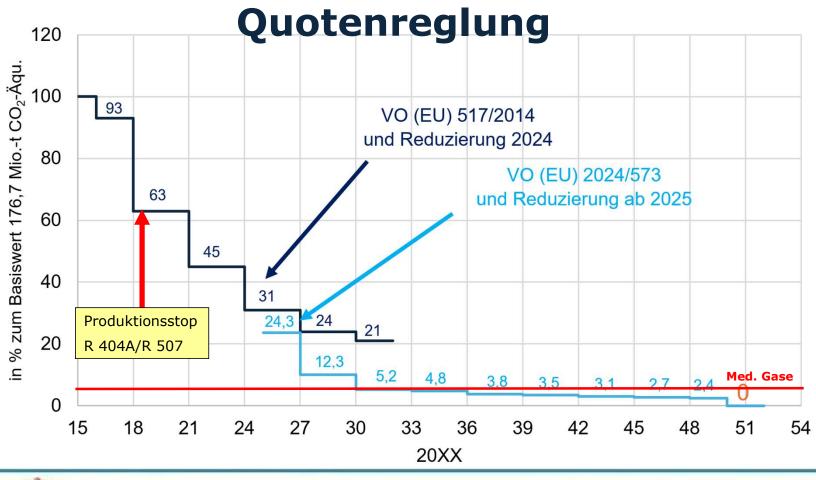
Brennbarkeit/Zündfähigkeit Arbeitsunfälle bei BG gelistet

Zahlen für Deutschland 2021

	Arbeitsunfälle	Todesfälle
Arbeit mit Handwerkzeugen	122.302	28
Handhabung von Gegenständen	126.587	33
Transport von Hand	82.743	6
Bedienung einer Maschine	42.842	19
Entflammbare Stoffe*	839	0
Sonstige	129.499	126
Gesamt	730.516	269

^{*} Primär Gastro, Küchen, Kantinen, aber auch KFZ-Bereich, Produktion wie Raffinerien etc., Handwerk wie Dachdecker, Transportmittel wie Stapler, Heizquellen, etc.

Quelle Statistik Arbeitsunfallgeschehen 2021, Deutsche Gesetzliche Unfallversicherung e. V. (DGUV)



Ausblick in die Zukunft F-Gas Verordnung

Schulung KW-Kältemittel

Förderung von stationären Kälte- und Klimaanlagen

Umrüstleitfaden - IKKE

2.6 Effizienz-Umrüstung von Kleinanlagen

An bestehenden, kleinen Kompressionskälte- oder -klimaanlagen mit fluorhaltigen Kältemitteln werden folgende Nach- und Umrüstungen zur Steigerung der

Energieeffizienz gefördort:

Förderung nach Kälte-Klima-Richtlinie

a) verpflicht

Umrü und h

EinbaVerflüAnlag

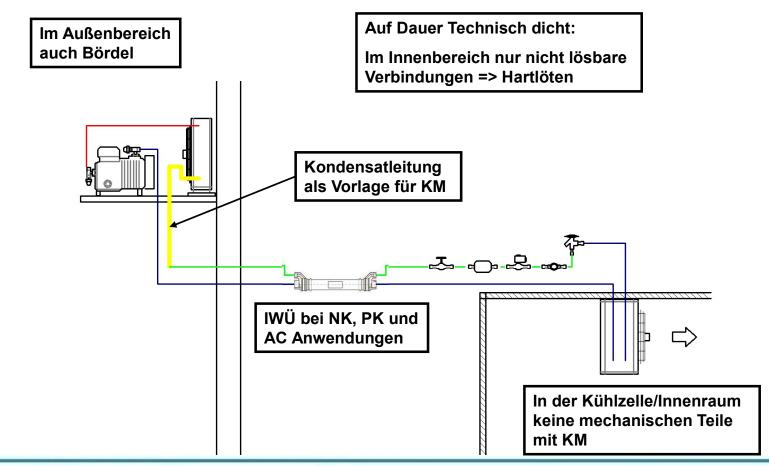
b) optionale

- Einbar
- Einba
- Einbar
 Saugle

Gefördert wird die Umstellung von halogenierten Kältemitteln mit einem GWP > 100 auf R50, R 170, R 1150, R-290, R-600a, R-1270 und deren Gemische. Aufgrund der Dichteunterschiede zu den halogenierten Kältemitteln ist bei einer Umstellung auf die genannten Ersatzkältemittel mit einer Verringerung der Füllmenge auf ca. 40%, bezogen auf die Füllmenge von halogenierten Kältemitteln, zu rechnen. Bei Ausbau und Ersatz des Sammlers durch eine geeignete Rohranordnung, z.B. eine fallende

Kondensatleitung, kann die Reduzierung der Füllmenge noch höher ausfallen.

+‡+		
	halogenierte Kältemittel GWP > 100	Ersatz-Kältemittel
	R-22, R-502, R-404A, R-507, R-417A, R-422D, R-407A, R-407C, R-407F,	100 % R-290
	R-407H, R-449A, R-448A, R-452A, R-454A, R-454C, R-455A, etc.	100 % R-1270
	R-12, R-134a, R-513A, R-450A, etc.	40% R-290, 60% R-600a
	R23, R508A, R508B, etc.	100% R-170,
		100% R-1150
	R 14, etc.	100% R-50


Tabelle 1: Liste der möglichen umzurüstenden Kältemittel

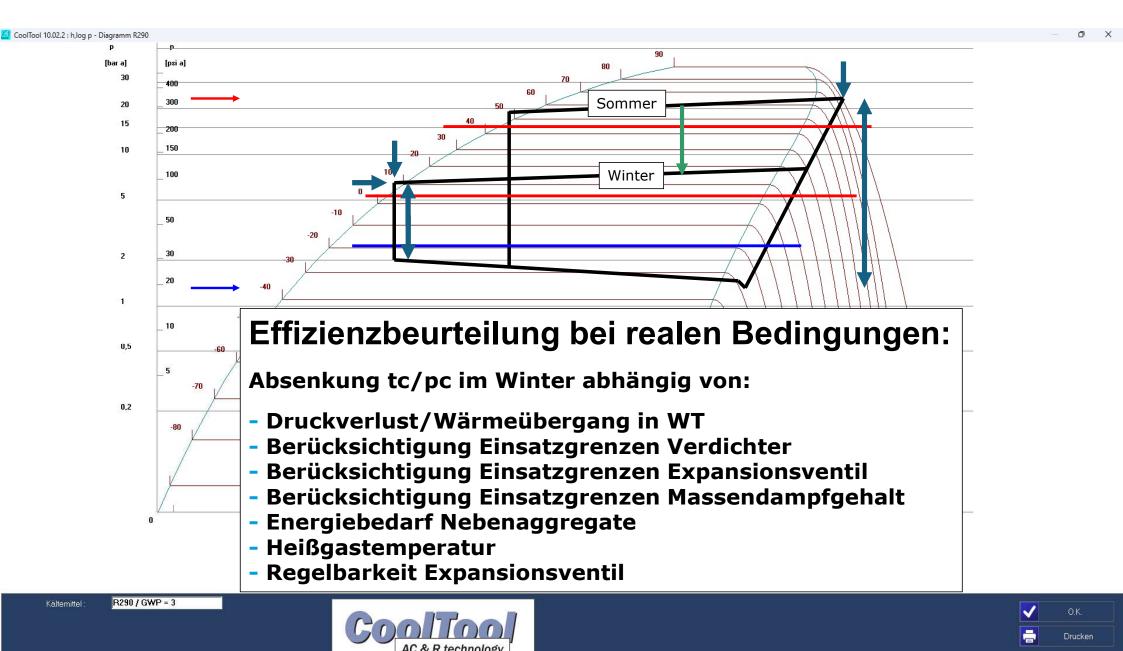
Beispiel: 14 kW TK-Zelle Details bei R290

Kältetechnische-Anwendungen

Übersicht Vor- und Nachteile Ersatz Kältemittel

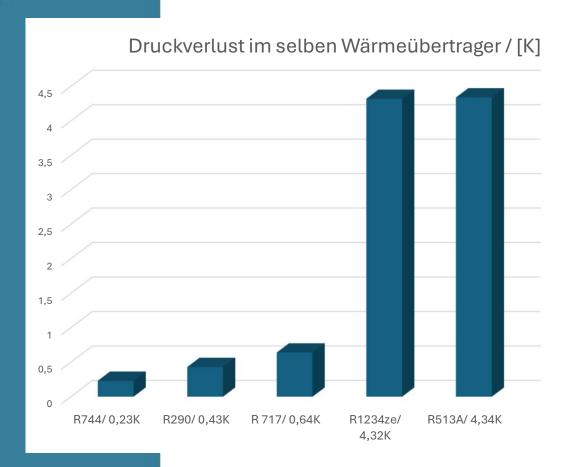
	R507/404A	R452A	R448/449A	R 455A	R 454C	R290	R1270
	3x	5x	12x	10x	10x	0x	0x
GWP	3922	2141	1397	140	140	J	J
Sicherheitsgruppe	A1	A1	A1	A2L	A2L	А3	А3
Neuanlagen bis	bis 2020	bis 2030	bis 2030	über 2030	über 2030	unbegrenzt	unbegrenzt
PFAS relevant	J	J	J	J	J	N	N
Relative Leistung NK t_R = 2°C	100%	102%	99%	99%	91%	96%	115%
Glide to $= -8^{\circ}C$	0,5 K	4K	5,6K	11,8K	7,8K	0K	0K
Selektive Öllöslichkeit	N	N	J	J	J	N	N
IWÜ erforderlich/empfohlen	N	N	J	J	J	Е	Е
Heißgastemperatur tc = 42°C	68°C	74°C	112°C	106°C	104°C	68°C/81°C	78°C/93°C
Relative Leistung TK tr= -20°C	100%	99%	63%	75%	74%	115%	146%
Glide to = -30°C	0,6K	3,9K	5,9K	12,2K	7,7K	0K	0K
Selektive Öllöslichkeit	N	N	J	J	J	N	N
IWÜ erforderlich	N	N	J	J	J	N	N
Nacheinspritzung erforderlich	N	N	J	J	J	N	N
Heißgastemperatur tc = 42°C	88°C	101°C	100°C/150°C	100°C/137°C	100°C/132°C	80°C	98°C

Quelle: Eigene Berechnungen und Messungen


Wärmepumpen-Anwendungen Übersicht über Vor- und Nachteile möglicher Kältemittel

	R407C	R410A	R32	R454C	R290
GWP	1774	2088	675	148	3
Sicherheitsgruppe	A1	A1	A2L	A2L	А3
Neuanlagen bis	bis 2027	bis 2027	bis 2029	bis 2035	unbegrenzt
PFAS relevant	J	J	N	J	N
Relative Leistung A7/W35	72%	100%	111%	65%	64%
Glide to =0°C	6,2K	0,1K	0K	7,6K	0K
Selektive Öllöslichkeit	N	N	N	J	N
IWÜ erforderlich/empfohlen	N	N	N	J	N
Heißgastemperatur	79°C	83°C	105°C	75°C/101°C	61°C
Relative Leistung A-10/W45	68%	100%	117%	60%	65%
Glide to = -18°C	6,6K	0,1K	0K	7,8K	0K
Selektive Öllöslichkeit	N	N	N	J	N
IWÜ erforderlich	N	N	N	J	N
Heißgastemperatur	120°C	122°C	167°C	107°C/129°C	82°C

Quelle: Eigene Berechnungen und Messungen

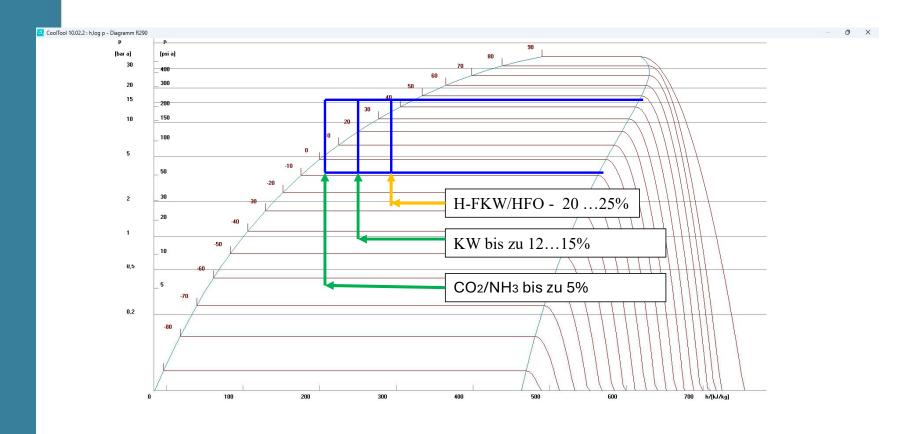


Auswertungsverfahren und Vorüberlegungen

Gesamtheitliche Betrachtung der Effizienz

- Druckverluste in den Wärmeübertragern
- Verschiebung des Ansaugdruckes bei hohen Druckverlusten nach unten
- Einfluss auf den polytropen Gesamtwirkungsgrad
- Erhöhung der notwendigen Antriebsleistung des Verdichters

Quelle: Berechnungen mit Herstellersoftware GPC



Energetische Bewertung von Kälteprozessen

Absenkung tc: Minimaler möglicher Massendampfgehalt

Ölverträglichkeit von Kohlenwasserstoffen

R404A

Die folgende Tabelle zeigt die Daten für R404A und alternative Kältemittel.

	R404A	R448A	R449A	R454A	R454C	R455A	R290	R1270	R744
Gruppe	HFKW	HFO/ HFKW	HFO/ HFKW	HFO/ HFKW	HFO/ HFKW	HFO/ HFKW	KW	KW	CO ₂
Bestandteile	R143a/ 125/ 134a	R32/ 125/ 1234yf/ 1234ze(E)/ 134a	R32/ 125/ 1234yf/ 134a	R32/ 1234yf	R32/ 1234yf	R32/ 1234yf/ 744			
Anwendung max (°C)	0	12	12	12	12	12	12	12	20
Anwendung min (°C)	-45	-40	-40	-40	-40	-40	-40	-40	-20
Anw. 2-stufig max (°C)	-30	-25	-25	-25	-25	-25	-20	-20	-10
Anw. 2-stufig min (°C)	-70	-65	-65	-65	-65	-65	-55	-55	-50
ÖI 1	POE	POE	POE	POE	POE	POE	PAO	PAO	POE
Öl 2	PVE	PVE	PVE	PVE	PVE	PVE	PAG	PAG	PAG
Öl 3							POE	POE	
Normal-Siedepunkt (°C)	-46,2	-46,1	-45,7	-47,9	-45,6	-52	-42,1	-47,6	-78,3
Normal-Taupunkt (°C)	-45,5	-39,9	-40	-42,2	-37,8	-39,2	-42,1	-47,6	-78,3
Tempgleit (K)	0,7	6,2	5,7	5,7	7,8	12,8	0	0	0
krit. Temp. (°C)	72	83	82	82	86	86	97	91	31
krit. Druck (bar)	37,35	45,95	45	46,3	43,2	46,5	42,5	45,6	73,8
ODP	0	0	0	0	0	0	0	0	0
GWP AR4	3922	1387	1397	239	148	148	3	2	1
GWP AR6	4728	1494	1504	270	166	166	0,02		1
Sichklasse	A1	A1	A1	A2L	A2L	A2L	A3	A3	A1
prakt. Grenze AEL (kg/m³)	0,52	0,388	0,357	0,056	0,059	0,105	0,008	0,008	0,07

Kohlenwasserstoffe sind mit

- PAO - Polyalphaolefinöl

- PAG - Polyalkylenglykolöl

- POE - Polyolesteröl

- MO - Mineralöl

kompatibel.

=> Einsatz als Ersatzkältemittel in der Breite des Anlagenbestandes möglich.

Quelle: BITZER Kühlmaschinenbau GmbH

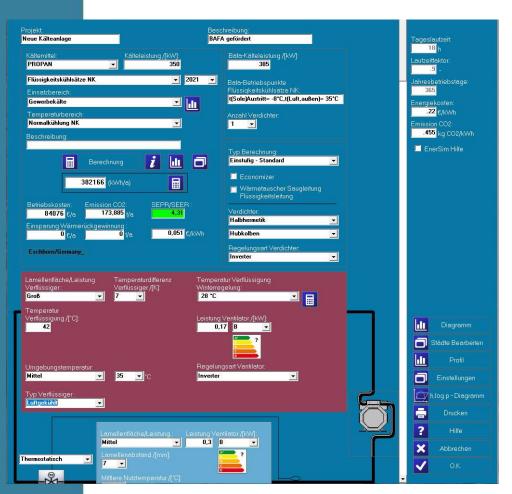
Förderung von stationären Kälte- und Klimaanlagen

Anlehnung an ECO-Design/ErP-Richtlinie - Effizienzcheck

SEPR // SEER =
$$\frac{\sum_{j=1}^{n} h_{j} \cdot P_{R} (T_{j})}{\sum_{j=1}^{n} h_{j} \cdot \left(\frac{P_{R} (T_{j})}{\mathsf{EER}_{\mathsf{bin}} (T_{j})}\right)}$$

SEPR // SEER =
$$\frac{\text{jährlicher Kältebedarf}}{\text{jährlicher elektr. Energiebedarf}}$$

- PR = gesamte Stromaufnahme incl. Lüfter, Pumpen, etc.
- T_j = Temperatur am Standort Eschborn
- ErP-Richtlinie verlangt 4 Referenzpunkte
- Simulation z.B. mit 12 x 24 = 288 Referenzpunkten* mit BAFA Energie Effizienz Tool



Förderung von stationären Kälte- und Klimaanlagen

Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA)

- Gesamtheitlicher Ansatz der Bewertung "Hohe Energieeffizienz" durch Simulation abhängig von der Konstruktion über 288 Referenzpunkte
- Bestimmung des SEPR-Wertes einer zu fördernden Anlage
- Vorgabe eines individuellen, zu erfüllenden MEPS-Wertes (Minimum Efficiency Performance Standard) zur Bewertung
- Eingetragene Einsatzgrenzen der Komponenten müssen praktikabel sein und zu einem möglichst optimalen Betrieb der Gesamtanlage führen
- Die handwerkliche und regelungstechnische Umsetzung sollte stichpunktartig überprüft werden

Finale Zusammenfassung

Dichte: 1,8 bis 2,0 kg/m³

Zündfähig bei : 1,7 -> 10,9 Vol %

Konzentration: 38 g/m³ Unterer Flammpunkt (LFL)

243 g/m³ Oberer Flammpunkt (HFL)

8 g/m³ "Practical Limit" (PL)

Leckage Verhalten: Bildet Nester

(zusammenhängende Schwaden)

Fließt eigenständig zu Senken

Bleibt lange explosionsfähig

Verwendung Kälte: Für Kältekreisläufe ungeeignet

Verringerte Energieeffizienz

×××××

Flammverhalten von und Effizienzbewertung von Kohlenwasserstoffen

Grundlagen für das BAFA Förderprogramm

10/2025

Abschließende Fragen?

Vielen Dank für ihre Aufmerksamkeit.

CoolTool Technology GmbH Kruppstr. 184 D-47229 Duisburg

www.cooltool-technology.de

info@cooltool-technology.de

